
Understat Documentation
Release 0.1.1

Amos Bastian

Apr 13, 2023

Contents

1 The User Guide 3
1.1 Installing understat . 3

2 The Class Documentation / Guide 5
2.1 Understat . 5

3 The Contributor Guide 47
3.1 Contributing . 47
3.2 Authors . 48

Python Module Index 51

Index 53

i

ii

Understat Documentation, Release 0.1.1

Note: I have nothing to do with Understat, and have simply created this package for fun!

Note: The latest version of understat is asynchronous, and requires Python 3.6+!

If you’re interested in helping out the development of understat, or have suggestions and ideas then please don’t
hesitate to create an issue on GitHub, join our Discord server or send an email to amosbastian@gmail.com!

A simple example:

import asyncio
import json

import aiohttp

from understat import Understat

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
player = await understat.get_players(

"epl", 2018,
player_name="Paul Pogba",
team_title="Manchester United"

)
print(json.dumps(player))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

>>>[{"id": "1740", "player_name": "Paul Pogba", "games": "27", "time": "2293", "goals
→˓": "11", "xG": "13.361832823604345", "assists": "9", "xA": "4.063152700662613",
→˓"shots": "87", "key_passes": "40", "yellow_cards": "5", "red_cards": "0", "position
→˓": "M S", "team_title": "Manchester United", "npg": "6", "npxG": "7.272482139989734
→˓", "xGChain": "17.388037759810686", "xGBuildup": "8.965998269617558"}]

With understat you can easily get all the data available on Understat!

Contents 1

https://travis-ci.com/amosbastian/understat
https://utopian.io/
https://pypi.org/project/understat/
https://discord.gg/cjY37fv
mailto:amosbastian@gmail.com
https://understat.com

Understat Documentation, Release 0.1.1

2 Contents

CHAPTER 1

The User Guide

This part of the documentation simply shows you have to install understat.

1.1 Installing understat

The recommended way to install understat is via pip.

pip install understat

Note: Depending on your system, you may need to use pip3 to install packages for Python 3.

1.1.1 Updating understat with pip

To update understat you can run:

pip install --upgrade understat

Example output:

Installing collected packages: understat
Found existing installation: understat 0.1.0
Uninstalling understat-0.1.0:

Successfully uninstalled understat-0.1.0
Successfully installed understat-0.1.1

1.1.2 Installing older versions

Older versions of understat can be installed by specifying the version number as part of the installation command:

3

Understat Documentation, Release 0.1.1

pip install understat==0.1.1

1.1.3 Installing from GitHub

The source code for understat is available on GitHub repository https://github.com/amosbastian/understat. To install
the most recent version of understat from here you can use the following command:

$ git clone git://github.com/amosbastian/understat.git

You can also install a .tar file or .zip file

$ curl -OL https://github.com/amosbastian/understat/tarball/master $ curl -OL https://github.com/
amosbastian/understat/zipball/master # Windows

Once it has been downloaded you can easily install it using pip:

$ cd understat
$ pip install .

4 Chapter 1. The User Guide

https://github.com/amosbastian/understat
https://github.com/requests/requests/tarball/master
https://github.com/requests/requests/tarball/master
https://github.com/amosbastian/understat/tarball/master
https://github.com/amosbastian/understat/zipball/master
https://github.com/amosbastian/understat/zipball/master

CHAPTER 2

The Class Documentation / Guide

This part of the documentation is for people who want or need more information bout specific functions and classes
found in understat. It includes example output for each of the functions, and also screenshots showing where you
would find the equivalent data on Understat.

2.1 Understat

The Understat class is the main, and only class used for interacting with Understat’s data. It requires a aiohttp.
ClientSession for sending requests, so typical usage of the Understat class can look something like this:

import asyncio
import json

import aiohttp

from understat import Understat

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
player = await understat.get_league_players(

"epl", 2018,
player_name="Paul Pogba",
team_title="Manchester United"

)
print(json.dumps(player))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

>>>[{"id": "1740", "player_name": "Paul Pogba", "games": "27", "time": "2293", "goals
→˓": "11", "xG": "13.361832823604345", "assists": "9", "xA": "4.063152700662613",
→˓"shots": "87", "key_passes": "40", "yellow_cards": "5", "red_cards": "0", "position
→˓": "M S", "team_title": "Manchester United", "npg": "6", "npxG": "7.272482139989734
→˓", "xGChain": "17.388037759810686", "xGBuildup": "8.965998269617558"}]

(continues on next page)

5

https://understat.com

Understat Documentation, Release 0.1.1

(continued from previous page)

2.1.1 The functions

Below each function of the Understat class will be documented separately. It will also show a screenshot of the
equivalent data on understat.com, and an example of how the function itself could be used.

Most of the functions come with the options keyword argument, and the **kwargs magic variable, which means that
their output can be filtered (the ways this can be done depends entirely on the output). It was the easiest way to
implement something like this, but may not always be optimal (e.g. filtering by home team may require an object for
example), and so this could be changed in the future.

If you have any suggestions on what kind of filtering options you’d like to see for certain functions, then you can create
an issue for this. Also, any help with adding better filtering, if necessary, is also very much appreciated!

—

Understat.get_league_fixtures(league_name, season, options=None, **kwargs)
Returns a list containing information about all the upcoming fixtures of the given league in the given season.

Parameters

• league_name (str) – The league’s name.

• season (str or int) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns A list of the fixtures as seen on Understat’s league overview.

Return type list

It returns the fixtures (not results) of the given league, in the given season. So for example, the fixtures as seen in the
screenshot below

6 Chapter 2. The Class Documentation / Guide

https://understat.com
https://github.com/amosbastian/understat/issues

Understat Documentation, Release 0.1.1

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used to
filter the output. So for example, if you wanted to get all Manchester United’s upcoming fixtures at home, then you
could do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
fixtures = await understat.get_league_fixtures(

"epl",
2018,
{

"h": {"id": "89",
"title": "Manchester United",
"short_title": "MUN"}

}
)
print(json.dumps(fixtures))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "9501",
"isResult": false,
"h": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},

(continues on next page)

2.1. Understat 7

Understat Documentation, Release 0.1.1

(continued from previous page)

"a": {
"id": "88",
"title": "Manchester City",
"short_title": "MCI"

},
"goals": {

"h": null,
"a": null

},
"xG": {

"h": null,
"a": null

},
"datetime": "2019-03-16 18:00:00"

},
...
{

"id": "9570",
"isResult": false,
"h": {
"id": "89",
"title": "Manchester United",
"short_title": "MUN"
},
"a": {
"id": "227",
"title": "Cardiff",
"short_title": "CAR"
},
"goals": {
"h": null,
"a": null
},
"xG": {
"h": null,
"a": null
},
"datetime": "2019-05-12 17:00:00"

}
]

—

Understat.get_league_table(league_name, season, with_headers=True, h_a=’overall’,
start_date=None, end_date=None)

Returns the latest league table of a specified league in a specified year.

Parameters

• league_name (str) – The league’s name.

• season (str or int) – The season.

• with_headers (bool) – whether or not to include headers in the returned table.

• h_a (str) – whether to return the overall table (“overall”), home table (“home”), or away
table (“away”).

• start_date (str) – start date to filter the table by (format: YYYY-MM-DD).

8 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

• end_date (str) – end date of the table to filter the table by (format: YYYY-MM-DD).

Returns List of lists.

Return type list

It returns the standings of the given league in the given year, as seen in the screenshot below

There are also optional “start_date” and “end_date” arguments, which can be used to get the table from a specific date
range from given season, like on screenshot below

2.1. Understat 9

Understat Documentation, Release 0.1.1

An example of getting the standings from the EPL in 2019 can be found below

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
table = await understat.get_league_table("EPL", "2019")
print(table)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
['Team', 'M', 'W', 'D', 'L', 'G', 'GA', 'PTS', 'xG', 'NPxG', 'xGA', 'NPxGA', 'NPxGD',
→˓ 'PPDA', 'OPPDA', 'DC', 'ODC', 'xPTS'],
['Liverpool', 38, 32, 3, 3, 85, 33, 99, 75.19, 71.39, 39.57, 38.81, 32.58, 8.01, 21.
→˓33, 429, 145, 74.28],
['Manchester City', 38, 26, 3, 9, 102, 35, 81, 102.21, 93.53, 37.0, 34.71, 58.82, 8.
→˓49, 23.77, 547, 135, 86.76],
['Manchester United', 38, 18, 12, 8, 66, 36, 66, 66.19, 55.53, 38.06, 35.78, 19.75,
→˓9.64, 11.1, 290, 178, 70.99],
...,
['Aston Villa', 38, 9, 8, 21, 41, 67, 35, 45.09, 42.65, 71.6, 66.88, -24.23, 12.34,
→˓7.89, 186, 343, 37.23],
['Bournemouth', 38, 9, 7, 22, 40, 65, 34, 44.67, 41.63, 63.29, 58.73, -17.1, 13.38,
→˓9.15, 210, 326, 39.2],
['Watford', 38, 8, 10, 20, 36, 64, 34, 48.56, 42.47, 59.53, 52.52, -10.05, 12.2, 9.
→˓64, 227, 259, 47.87], (continues on next page)

10 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

['Norwich', 38, 5, 6, 27, 26, 75, 21, 37.23, 35.71, 71.61, 66.13, -30.41, 12.59, 9.
→˓65, 207, 345, 33.12]
]

—

Understat.get_player_grouped_stats(player_id)
Returns the player with the given ID’s grouped stats (as seen at the top of a player’s page).

Parameters player_id (int or str) – The player’s Understat ID.

Returns Dictionary of the player’s grouped stats.

Return type dict

It returns all the statistics of a given player, which includes stuff like their performance per season, position and more.
Basically, it’s everything that can be found in the table shown in the screenshot below

An example of getting Sergio Agüero’s grouped data can be found below

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
grouped_stats = await understat.get_player_grouped_stats(619)
print(json.dumps(grouped_stats))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

{
"season": [

{
"position": "FW",
"games": "26",
"goals": "18",
"shots": "95",
"time": "1960",
"xG": "17.515484783798456",
"assists": "6",
"xA": "3.776376834139228",
"key_passes": "25",
"season": "2018",
"team": "Manchester City",
"yellow": "3",

(continues on next page)

2.1. Understat 11

Understat Documentation, Release 0.1.1

(continued from previous page)

"red": "0",
"npg": "16",
"npxG": "15.9931472055614",
"xGChain": "23.326821692287922",
"xGBuildup": "6.351545065641403"
},
...,
{
"position": "Sub",
"games": "33",
"goals": "26",
"shots": "148",
"time": "2551",
"xG": "25.270159743726254",
"assists": "8",
"xA": "5.568922242149711",
"key_passes": "33",
"season": "2014",
"team": "Manchester City",
"yellow": "4",
"red": "0",
"npg": "21",
"npxG": "20.70318364351988",
"xGChain": "27.805154908448458",
"xGBuildup": "6.878173082135618"
}

],
"position": {

"2018": {
"FW": {

"position": "FW",
"games": "24",
"goals": "18",
"shots": "94",
"time": "1911",
"xG": "17.464063242077827",
"assists": "6",
"xA": "3.776376834139228",
"key_passes": "25",
"season": "2018",
"yellow": "3",
"red": "0",
"npg": "16",
"npxG": "15.94172566384077",
"xGChain": "23.258203461766243",
"xGBuildup": "6.334348376840353"

},
"Sub": {

"position": "Sub",
"games": "2",
"goals": "0",
"shots": "1",
"time": "49",
"xG": "0.05142154172062874",
"assists": "0",
"xA": "0",
"key_passes": "0",

(continues on next page)

12 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"season": "2018",
"yellow": "0",
"red": "0",
"npg": "0",
"npxG": "0.05142154172062874",
"xGChain": "0.06861823052167892",
"xGBuildup": "0.017196688801050186"

}
},
...,
},
"2014": {

"FW": {
"position": "FW",
"games": "30",
"goals": "24",
"shots": "142",
"time": "2504",
"xG": "24.362012460827827",
"assists": "8",
"xA": "5.568922242149711",
"key_passes": "33",
"season": "2014",
"yellow": "4",
"red": "0",
"npg": "19",
"npxG": "19.795036360621452",
"xGChain": "26.94415594637394",
"xGBuildup": "6.878173082135618"

},
"Sub": {

"position": "Sub",
"games": "3",
"goals": "2",
"shots": "6",
"time": "47",
"xG": "0.9081472828984261",
"assists": "0",
"xA": "0",
"key_passes": "0",
"season": "2014",
"yellow": "0",
"red": "0",
"npg": "2",
"npxG": "0.9081472828984261",
"xGChain": "0.8609989620745182",
"xGBuildup": "0"

}
}

},
"situation": {

"2015": {
"OpenPlay": {

"situation": "OpenPlay",
"season": "2015",
"goals": "17",
"shots": "97",

(continues on next page)

2.1. Understat 13

Understat Documentation, Release 0.1.1

(continued from previous page)

"xG": "13.971116883680224",
"assists": "2",
"key_passes": "26",
"xA": "2.0287596937268972",
"npg": "17",
"npxG": "13.971116883680224",
"time": 2399

},
"FromCorner": {

"situation": "FromCorner",
"season": "2015",
"goals": "2",
"shots": "11",
"xG": "1.8276203628629446",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "2",
"npxG": "1.8276203628629446",
"time": 2399

},
"Penalty": {

"situation": "Penalty",
"season": "2015",
"goals": "4",
"shots": "5",
"xG": "3.8058441877365112",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "0",
"npxG": "0",
"time": 2399

},
...,
"2014": {

"OpenPlay": {
"situation": "OpenPlay",
"season": "2014",
"goals": "19",
"shots": "128",
"xG": "18.23446972388774",
"assists": "7",
"key_passes": "32",
"xA": "4.622839629650116",
"npg": "19",
"npxG": "18.23446972388774",
"time": 2551

},
"FromCorner": {

"situation": "FromCorner",
"season": "2014",
"goals": "1",
"shots": "12",
"xG": "1.8788630235940218",
"assists": "1",
"key_passes": "1",

(continues on next page)

14 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"xA": "0.9460826516151428",
"npg": "1",
"npxG": "1.8788630235940218",
"time": 2551

},
"Penalty": {

"situation": "Penalty",
"season": "2014",
"goals": "5",
"shots": "6",
"xG": "4.566976249217987",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "0",
"npxG": "0",
"time": 2551

},
"SetPiece": {

"situation": "SetPiece",
"season": "2014",
"goals": "1",
"shots": "2",
"xG": "0.5898510366678238",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "1",
"npxG": "0.5898510366678238",
"time": 2551

}
}

},
"shotZones": {

"2014": {
"shotOboxTotal": {

"shotZones": "shotOboxTotal",
"season": "2014",
"goals": "2",
"shots": "33",
"xG": "1.5900825830176473",
"assists": "2",
"key_passes": "9",
"xA": "0.3100438117980957",
"npg": "2",
"npxG": "1.5900825830176473"

},
"shotPenaltyArea": {

"shotZones": "shotPenaltyArea",
"season": "2014",
"goals": "22",
"shots": "108",
"xG": "19.79369100742042",
"assists": "5",
"key_passes": "22",
"xA": "3.9576267898082733",
"npg": "17",

(continues on next page)

2.1. Understat 15

Understat Documentation, Release 0.1.1

(continued from previous page)

"npxG": "15.226714758202434"
},
"shotSixYardBox": {

"shotZones": "shotSixYardBox",
"season": "2014",
"goals": "2",
"shots": "7",
"xG": "3.8863864429295063",
"assists": "1",
"key_passes": "2",
"xA": "1.3012516796588898",
"npg": "2",
"npxG": "3.8863864429295063"

}
},
...,
"2018": {

"shotOboxTotal": {
"shotZones": "shotOboxTotal",
"season": "2018",
"goals": "2",
"shots": "21",
"xG": "0.8707829182967544",
"assists": "1",
"key_passes": "9",
"xA": "0.31408058758825064",
"npg": "2",
"npxG": "0.8707829182967544"

},
"shotPenaltyArea": {

"shotZones": "shotPenaltyArea",
"season": "2018",
"goals": "12",
"shots": "65",
"xG": "11.844964944757521",
"assists": "4",
"key_passes": "14",
"xA": "2.1070052348077297",
"npg": "10",
"npxG": "10.322627269662917"

},
"shotSixYardBox": {

"shotZones": "shotSixYardBox",
"season": "2018",
"goals": "4",
"shots": "9",
"xG": "4.799736991524696",
"assists": "1",
"key_passes": "2",
"xA": "1.3552910089492798",
"npg": "4",
"npxG": "4.799736991524696"

}
}

},
"shotTypes": {

"2014": {
(continues on next page)

16 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"RightFoot": {
"shotTypes": "RightFoot",
"season": "2014",
"goals": "18",
"shots": "96",
"xG": "17.13349057827145",
"assists": "5",
"key_passes": "19",
"xA": "3.883937703445554",
"npg": "13",
"npxG": "12.566514329053462"

},
"LeftFoot": {

"shotTypes": "LeftFoot",
"season": "2014",
"goals": "7",
"shots": "40",
"xG": "6.236775731667876",
"assists": "3",
"key_passes": "13",
"xA": "1.6454832945019007",
"npg": "7",
"npxG": "6.236775731667876"

},
"Head": {

"shotTypes": "Head",
"season": "2014",
"goals": "1",
"shots": "12",
"xG": "1.8998937234282494",
"assists": "0",
"key_passes": "1",
"xA": "0.03950128331780434",
"npg": "1",
"npxG": "1.8998937234282494"

}
},
...,
},
"2018": {

"RightFoot": {
"shotTypes": "RightFoot",
"season": "2018",
"goals": "9",
"shots": "58",
"xG": "9.876922971569002",
"assists": "3",
"key_passes": "9",
"xA": "1.6752301333472133",
"npg": "7",
"npxG": "8.354585296474397"

},
"LeftFoot": {

"shotTypes": "LeftFoot",
"season": "2018",
"goals": "6",
"shots": "26",

(continues on next page)

2.1. Understat 17

Understat Documentation, Release 0.1.1

(continued from previous page)

"xG": "4.921279687434435",
"assists": "3",
"key_passes": "16",
"xA": "2.101146697998047",
"npg": "6",
"npxG": "4.921279687434435"

},
"Head": {

"shotTypes": "Head",
"season": "2018",
"goals": "2",
"shots": "10",
"xG": "1.8183354930952191",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "2",
"npxG": "1.8183354930952191"

},
"OtherBodyPart": {

"shotTypes": "OtherBodyPart",
"season": "2018",
"goals": "1",
"shots": "1",
"xG": "0.8989467024803162",
"assists": "0",
"key_passes": "0",
"xA": "0",
"npg": "1",
"npxG": "0.8989467024803162"

}
}

}
}

—

Understat.get_player_matches(player_id, options=None, **kwargs)
Returns the player with the given ID’s matches data.

Parameters

• player_id (int or str) – The player’s Understat ID.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of the player’s matches data.

Return type list

It returns the information about the matches played by the given player. So for example, the matches Sergio Agüero
has played, as seen in the screenshot

18 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

This function also comes with the options keyword argument, and also the **kwargs magic variable. An example of
how you could use either of these to filter Sergio Agüero’s matches to only include matches where Manchester United
were the home team is shown below

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
Using **kwargs
player_matches = await understat.get_player_matches(

619, h_team="Manchester United")
Or using options keyword arugment
player_matches = await understat.get_player_matches(

619, {"h_team": "Manchester United"})
print(json.dumps(player_matches))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs

[
{

"goals": "2",
"shots": "5",
"xG": "1.4754852056503296",
"time": "90",
"position": "FW",
"h_team": "Manchester United",
"a_team": "Manchester City",
"h_goals": "4",
"a_goals": "2",
"date": "2015-04-12",
"id": "4459",
"season": "2014",
"roster_id": "23306",
"xA": "0",
"assists": "0",
"key_passes": "0",
"npg": "2",
"npxG": "1.4754852056503296",
"xGChain": "1.4855852127075195",
"xGBuildup": "0.04120262712240219"

(continues on next page)

2.1. Understat 19

Understat Documentation, Release 0.1.1

(continued from previous page)

}
]

Since the usage of both the options keyword argument and the **kwargs magic variable have been shown, the examples
following this will only show one of the two.

—

Understat.get_player_shots(player_id, options=None, **kwargs)
Returns the player with the given ID’s shot data.

Parameters

• player_id (int or str) – The player’s Understat ID.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of the player’s shot data.

Return type list

It returns the given player’s shot data, which includes information about the situation (open play, freekick etc.), if it
hit the post or was a goal, and more. Basically, all the information that you can get from a player’s page in the section
shown below

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used
to filter the output. So for example, if you wanted to get all Sergio Agüero’s shots (not necessarily goals) that were
assisted by Fernandinho, then you could do the following

20 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
player_shots = await understat.get_player_shots(

619, {"player_assisted": "Fernandinho"})
print(json.dumps(player_shots))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "14552",
"minute": "91",
"result": "SavedShot",
"X": "0.9259999847412109",
"Y": "0.6809999847412109",
"xG": "0.0791548416018486",
"player": "Sergio Ag\u00fcero",
"h_a": "a",
"player_id": "619",
"situation": "OpenPlay",
"season": "2014",
"shotType": "LeftFoot",
"match_id": "4757",
"h_team": "Newcastle United",
"a_team": "Manchester City",
"h_goals": "0",
"a_goals": "2",
"date": "2014-08-17 16:00:00",
"player_assisted": "Fernandinho",
"lastAction": "Pass"

},
...,
{

"id": "233670",
"minute": "15",
"result": "MissedShots",
"X": "0.7419999694824219",
"Y": "0.5359999847412109",
"xG": "0.029104366898536682",
"player": "Sergio Ag\u00fcero",
"h_a": "h",
"player_id": "619",
"situation": "OpenPlay",
"season": "2018",
"shotType": "RightFoot",
"match_id": "9234",
"h_team": "Manchester City",
"a_team": "Newcastle United",
"h_goals": "2",
"a_goals": "1",
"date": "2018-09-01 16:30:00",
"player_assisted": "Fernandinho",
"lastAction": "Pass"

(continues on next page)

2.1. Understat 21

Understat Documentation, Release 0.1.1

(continued from previous page)

}
]

—

Understat.get_player_stats(player_id, positions=None)
Returns the player with the given ID’s min / max stats, per position(s).

Parameters

• player_id (int or str) – The player’s Understat ID.

• positions – Positions to filter the data by, defaults to None.

• positions – list, optional

Returns List of the player’s stats per position.

Return type list

It returns the player’s average stats overall, which includes stuff like their average goals per 90 minutes, average
expected assists per 90 minutes and more. Basically everything you can see on a player’s page in the section shown
below

The function comes with the positions argument, which can be used to filter the stats by position(s). So for example,
if you wanted to get Sergio Agüero’s performance as a forward, then you could do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
player_stats = await understat.get_player_stats(619, ["FW"])
print(json.dumps(player_stats))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

22 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

which outputs

[
{

"goals": {
"min": 0.0011,
"max": 0.0126,
"avg": 0.0042
},
"xG": {
"min": 0.00172821,
"max": 0.0120816,
"avg": 0.00415549
},
"shots": {
"min": 0.015,
"max": 0.0737,
"avg": 0.028
},
"assists": {
"min": 0,
"max": 0.0048,
"avg": 0.0014
},
"xA": {
"min": 0.000264191,
"max": 0.00538174,
"avg": 0.00131568
},
"key_passes": {
"min": 0.0036,
"max": 0.0309,
"avg": 0.012
},
"xGChain": {
"min": 0.00272705,
"max": 0.0169137,
"avg": 0.00533791
},
"xGBuildup": {
"min": 0.000243189,
"max": 0.00671256,
"avg": 0.00131848
},
"position": "FW"

}
]

—

Understat.get_league_players(league_name, season, options=None, **kwargs)
Returns a list containing information about all the players in the given league in the given season.

Parameters

• league_name (str) – The league’s name.

• season (str or int) – The season.

• options – Options to filter the data by, defaults to None.

2.1. Understat 23

Understat Documentation, Release 0.1.1

• options – dict, optional

Returns A list of the players as seen on Understat’s league overview.

Return type list

It returns all the information about the players in a given league in the given season. This includes stuff like their
number of goals scored, their total expected assists and more. Basically, it’s all the information you can find in the
player table shown on all league overview pages on understat.com.

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used to
filter the output. So for example, if you wanted to get all the players who play for Manchester United, then you could
do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
players = await understat.get_league_players(

"epl",
2018,
team_title="Manchester United"

)
print(json.dumps(players))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "594",
"player_name": "Romelu Lukaku",
"games": "27",
"time": "1768",
"goals": "12",
"xG": "12.054240763187408",
"assists": "0",
"xA": "1.6836179178208113",

(continues on next page)

24 Chapter 2. The Class Documentation / Guide

https://understat.com

Understat Documentation, Release 0.1.1

(continued from previous page)

"shots": "50",
"key_passes": "17",
"yellow_cards": "4",
"red_cards": "0",
"position": "F S",
"team_title": "Manchester United",
"npg": "12",
"npxG": "12.054240763187408",
"xGChain": "12.832402393221855",
"xGBuildup": "3.366600174456835"

},
...,
{

"id": "1740",
"player_name": "Paul Pogba",
"games": "27",
"time": "2293",
"goals": "11",
"xG": "13.361832823604345",
"assists": "9",
"xA": "4.063152700662613",
"shots": "87",
"key_passes": "40",
"yellow_cards": "5",
"red_cards": "0",
"position": "M S",
"team_title": "Manchester United",
"npg": "6",
"npxG": "7.272482139989734",
"xGChain": "17.388037759810686",
"xGBuildup": "8.965998269617558"

}
]

—

Understat.get_league_results(league_name, season, options=None, **kwargs)
Returns a list containing information about all the results (matches) played by the teams in the given league in
the given season.

Parameters

• league_name (str) – The league’s name.

• season (str or int) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns A list of the results as seen on Understat’s league overview.

Return type list

It returns the results (not fixtures) of the given league, in the given season. So for example, the results as seen in the
screenshot below

2.1. Understat 25

Understat Documentation, Release 0.1.1

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used to
filter the output. So for example, if you wanted to get all Manchester United’s results away from home, then you could
do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
fixtures = await understat.get_league_results(

"epl",
2018,
{

"a": {"id": "89",
"title": "Manchester United",
"short_title": "MUN"}

}
)
print(json.dumps(fixtures))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "9215",
"isResult": true,
"h": {

"id": "220",
"title": "Brighton",
"short_title": "BRI"

(continues on next page)

26 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

},
"a": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"goals": {

"h": "3",
"a": "2"

},
"xG": {

"h": "1.63672",
"a": "1.56579"

},
"datetime": "2018-08-19 18:00:00",
"forecast": {

"w": "0.3538",
"d": "0.3473",
"l": "0.2989"

}
},
...,
{

"id": "9496",
"isResult": true,
"h": {

"id": "83",
"title": "Arsenal",
"short_title": "ARS"

},
"a": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"goals": {

"h": "2",
"a": "0"

},
"xG": {

"h": "1.52723",
"a": "2.3703"

},
"datetime": "2019-03-10 16:30:00",
"forecast": {

"w": "0.1667",
"d": "0.227",
"l": "0.6063"

}
}

]

—

Understat.get_match_players(match_id, options=None, **kwargs)
Returns a dictionary containing information about the players who played in the given match.

Parameters

2.1. Understat 27

Understat Documentation, Release 0.1.1

• fixture_id (int) – A match’s ID.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns Dictionary containing information about the players who played in the match.

Return type dict

It returns information about the players who played in the given match. So for example, the players seen in the
screenshot below

An example of getting the players who played in the match between Manchester United and Chelsea on 11 August,
2019 which ended 4-0 can be seen below:

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
players = await understat.get_match_players(11652)
print(json.dumps(players))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

{
"h": {

"341628": {
"id": "341628",
"goals": "2",
"own_goals": "0",
"shots": "4",
"xG": "1.3030972480773926",
"time": "88",

(continues on next page)

28 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"player_id": "556",
"team_id": "89",
"position": "AML",
"player": "Marcus Rashford",
"h_a": "h",
"yellow_card": "0",
"red_card": "0",
"roster_in": "341631",
"roster_out": "0",
"key_passes": "0",
"assists": "0",
"xA": "0",
"xGChain": "1.1517746448516846",
"xGBuildup": "0.6098462343215942",
"positionOrder": "13"

},
...,
"341629": {

"id": "341629",
"goals": "1",
"own_goals": "0",
"shots": "4",
"xG": "0.7688590884208679",
"time": "90",
"player_id": "553",
"team_id": "89",
"position": "FW",
"player": "Anthony Martial",
"h_a": "h",
"yellow_card": "1",
"red_card": "0",
"roster_in": "0",
"roster_out": "0",
"key_passes": "1",
"assists": "0",
"xA": "0.05561231076717377",
"xGChain": "0.9395027160644531",
"xGBuildup": "0.11503136157989502",
"positionOrder": "15"

}
},
"a": {

"341633": {
"id": "341633",
"goals": "0",
"own_goals": "0",
"shots": "0",
"xG": "0",
"time": "90",
"player_id": "5061",
"team_id": "80",
"position": "GK",
"player": "Kepa",
"h_a": "a",
"yellow_card": "0",
"red_card": "0",
"roster_in": "0",

(continues on next page)

2.1. Understat 29

Understat Documentation, Release 0.1.1

(continued from previous page)

"roster_out": "0",
"key_passes": "0",
"assists": "0",
"xA": "0",
"xGChain": "0.04707280918955803",
"xGBuildup": "0.04707280918955803",
"positionOrder": "1"

},
...,
"341642": {

"id": "341642",
"goals": "0",
"own_goals": "0",
"shots": "2",
"xG": "0.08609434962272644",
"time": "60",
"player_id": "592",
"team_id": "80",
"position": "AML",
"player": "Ross Barkley",
"h_a": "a",
"yellow_card": "0",
"red_card": "0",
"roster_in": "341646",
"roster_out": "0",
"key_passes": "1",
"assists": "0",
"xA": "0.024473881348967552",
"xGChain": "0.11056823283433914",
"xGBuildup": "0",
"positionOrder": "13"

}
}

}

—

Understat.get_match_shots(match_id, options=None, **kwargs)
Returns a dictionary containing information about shots taken by the players in the given match.

Parameters

• fixture_id (int) – A match’s ID.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns Dictionary containing information about the players who played in the match.

Return type dict

It returns information about the shots made by players who played in the given match. So for example, the shots seen
in the screenshot below

30 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

An example of getting the shots made in the match between Manchester United and Chelsea on 11 August, 2019 which
ended 4-0 can be seen below:

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
players = await understat.get_match_shots(11652)
print(json.dumps(players))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

{
"h": [

{
"id": "310295",
"minute": "6",
"result": "SavedShot",
"X": "0.8280000305175781",
"Y": "0.639000015258789",
"xG": "0.04247729107737541",
"player": "Anthony Martial",
"h_a": "h",
"player_id": "553",
"situation": "OpenPlay",
"season": "2019",
"shotType": "RightFoot",
"match_id": "11652",
"h_team": "Manchester United",
"a_team": "Chelsea",
"h_goals": "4",
"a_goals": "0",
"date": "2019-08-11 16:30:00",
"player_assisted": null,
"lastAction": "None"

},
...,
{

(continues on next page)

2.1. Understat 31

Understat Documentation, Release 0.1.1

(continued from previous page)

"id": "310318",
"minute": "86",
"result": "BlockedShot",
"X": "0.8669999694824219",
"Y": "0.47299999237060547",
"xG": "0.11503136157989502",
"player": "Mason Greenwood",
"h_a": "h",
"player_id": "7490",
"situation": "OpenPlay",
"season": "2019",
"shotType": "RightFoot",
"match_id": "11652",
"h_team": "Manchester United",
"a_team": "Chelsea",
"h_goals": "4",
"a_goals": "0",
"date": "2019-08-11 16:30:00",
"player_assisted": "Aaron Wan-Bissaka",
"lastAction": "Cross"

}
],
"a": [

{
"id": "310293",
"minute": "3",
"result": "ShotOnPost",
"X": "0.835999984741211",
"Y": "0.38599998474121094",
"xG": "0.03392893448472023",
"player": "Tammy Abraham",
"h_a": "a",
"player_id": "702",
"situation": "FromCorner",
"season": "2019",
"shotType": "RightFoot",
"match_id": "11652",
"h_team": "Manchester United",
"a_team": "Chelsea",
"h_goals": "4",
"a_goals": "0",
"date": "2019-08-11 16:30:00",
"player_assisted": "Mateo Kovacic",
"lastAction": "BallTouch"

},
...,
{

"id": "310321",
"minute": "93",
"result": "SavedShot",
"X": "0.850999984741211",
"Y": "0.7",
"xG": "0.043492574244737625",
"player": "Emerson",
"h_a": "a",
"player_id": "1245",
"situation": "OpenPlay",

(continues on next page)

32 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"season": "2019",
"shotType": "LeftFoot",
"match_id": "11652",
"h_team": "Manchester United",
"a_team": "Chelsea",
"h_goals": "4",
"a_goals": "0",
"date": "2019-08-11 16:30:00",
"player_assisted": "Christian Pulisic",
"lastAction": "Pass"

}
]

}

—

Understat.get_stats(options=None, **kwargs)
Returns a list containing stats of every league, grouped by month.

Parameters

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of dictionaries.

Return type list

It returns the average stats of all the leagues tracked on understat.com, split by month. Basically, it is all the information
you see on their homepage, as seen in the screenshot below

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used to
filter the output. So for example, if you wanted to gets the stats for the Premier League in the 8th month of each year
they have been tracking the stats, then you could do the following

2.1. Understat 33

https://understat.com

Understat Documentation, Release 0.1.1

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
stats = await understat.get_stats({"league": "EPL", "month": "8"})
print(json.dumps(stats))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs

[
{

"league_id": "1",
"league": "EPL",
"h": "1.3000",
"a": "1.4000",
"hxg": "1.141921697060267",
"axg": "1.110964298248291",
"year": "2014",
"month": "8",
"matches": "30"

},
{

"league_id": "1",
"league": "EPL",
"h": "1.1000",
"a": "1.3750",
"hxg": "1.2151590750552714",
"axg": "1.221375621855259",
"year": "2015",
"month": "8",
"matches": "40"

},
{

"league_id": "1",
"league": "EPL",
"h": "1.2000",
"a": "1.2000",
"hxg": "1.3605596815546355",
"axg": "1.145853524406751",
"year": "2016",
"month": "8",
"matches": "30"

},
{

"league_id": "1",
"league": "EPL",
"h": "1.3000",
"a": "1.1333",
"hxg": "1.4422248949607213",
"axg": "1.096401752779881",
"year": "2017",
"month": "8",
"matches": "30"

},
{

(continues on next page)

34 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

"league_id": "1",
"league": "EPL",
"h": "1.6333",
"a": "1.3333",
"hxg": "1.453833992779255",
"axg": "1.4325587471326193",
"year": "2018",
"month": "8",
"matches": "30"

}
]

—

Understat.get_team_fixtures(team_name, season, options=None, **kwargs)
Returns a team’s upcoming fixtures in the given season.

Parameters

• team_name (str) – A team’s name.

• season (int or str) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of the team’s upcoming fixtures in the given season.

Return type list

It returns the upcoming fixtures (not results) of the given team, in the given season. So for example, the fixtures as
seen in the screenshot below

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used
to filter the output. This is similar to the get_league_fixtures function, but it makes certain options for filtering much
easier. For example, if you, once again, wanted to get all Manchester United’s upcoming fixtures at home, then instead
of passing a dictionary as keyword argument, you could simply do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
results = await understat.get_team_fixtures(

"Manchester United",
2018,
side="h"

)
print(json.dumps(results))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

2.1. Understat 35

Understat Documentation, Release 0.1.1

[
{

"id": "9501",
"isResult": false,
"side": "h",
"h": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"a": {

"id": "88",
"title": "Manchester City",
"short_title": "MCI"

},
"goals": {

"h": null,
"a": null

},
"xG": {

"h": null,
"a": null

},
"datetime": "2019-03-16 18:00:00"

},
...,
{

"id": "9570",
"isResult": false,
"side": "h",
"h": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"a": {

"id": "227",
"title": "Cardiff",
"short_title": "CAR"

},
"goals": {

"h": null,
"a": null

},
"xG": {

"h": null,
"a": null

},
"datetime": "2019-05-12 17:00:00"

}
]

—

Understat.get_team_players(team_name, season, options=None, **kwargs)
Returns a team’s player statistics in the given season.

Parameters

36 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

• team_name (str) – A team’s name.

• season (int or str) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of the team’s players’ statistics in the given season.

Return type list

It returns all the information about the players of a given team in the given season. This includes stuff like their number
of goals scored, their total expected assists and more. Basically, it’s all the information you can find in the player table
shown on all team overview pages on understat.com.

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used
to filter the output. This is similar to the get_league_players function, but is quicker and easier. For example, if you,
once again, wanted to get all Manchester United’s players who have only played games as a forward, then you could
do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
results = await understat.get_team_players(

"Manchester United",
2018,
position="F S"

)
print(json.dumps(results))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs

[
{

(continues on next page)

2.1. Understat 37

https://understat.com

Understat Documentation, Release 0.1.1

(continued from previous page)

"id": "594",
"player_name": "Romelu Lukaku",
"games": "27",
"time": "1768",
"goals": "12",
"xG": "12.054240763187408",
"assists": "0",
"xA": "1.6836179178208113",
"shots": "50",
"key_passes": "17",
"yellow_cards": "4",
"red_cards": "0",
"position": "F S",
"team_title": "Manchester United",
"npg": "12",
"npxG": "12.054240763187408",
"xGChain": "12.832402393221855",
"xGBuildup": "3.366600174456835"

}
]

—

Understat.get_team_results(team_name, season, options=None, **kwargs)
Returns a team’s results in the given season.

Parameters

• team_name (str) – A team’s name.

• season (int or str) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns List of the team’s results in the given season.

Return type list

It returns the results (not fixtures) of the given team, in the given season. So for example, the fixtures as seen in the
screenshot below

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used
to filter the output. This is similar to the get_league_results function, but it makes certain options for filtering much
easier. For example, if you, once again, wanted to get all Manchester United’s results at home, then instead of passing
a dictionary as keyword argument, you could simply do the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
results = await understat.get_team_results(

"Manchester United",

(continues on next page)

38 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

2018,
side="h"

)
print(json.dumps(results))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "9197",
"isResult": true,
"side": "h",
"h": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"a": {

"id": "75",
"title": "Leicester",
"short_title": "LEI"

},
"goals": {

"h": "2",
"a": "1"

},
"xG": {

"h": "1.5137",
"a": "1.73813"

},
"datetime": "2018-08-10 22:00:00",
"forecast": {

"w": 0.33715468577027,
"d": 0.23067469101496,
"l": 0.43217062251974

},
"result": "w"

},
...,
{

"id": "9226",
"isResult": true,
"side": "h",
"h": {

"id": "89",
"title": "Manchester United",
"short_title": "MUN"

},
"a": {

"id": "82",
"title": "Tottenham",
"short_title": "TOT"

},
"goals": {

(continues on next page)

2.1. Understat 39

Understat Documentation, Release 0.1.1

(continued from previous page)

"h": "0",
"a": "3"

},
"xG": {

"h": "1.40321",
"a": "1.80811"

},
"datetime": "2018-08-27 22:00:00",
"forecast": {

"w": 0.29970781519619,
"d": 0.22891929318443,
"l": 0.47137289056693

},
"result": "l"

}
]

—

Understat.get_team_stats(team_name, season)
Returns a team’s stats, as seen on their page on Understat, in the given season.

Parameters

• team_name (str) – A team’s name, e.g. Manchester United.

• season (int or str) – A season / year, e.g. 2018.

Returns A dictionary containing a team’s stats.

Return type dict

It returns all the statistics of a given team, which includes stuff like their performance per season, formation and more.
Basically, it’s everything that can be found in the table shown in the screenshot below

An example of getting Manchester United’s data can be found below

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
team_stats = await understat.get_team_stats("Manchester United", 2018)
print(json.dumps(team_stats))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

40 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

{
"situation": {

"OpenPlay": {
"shots": 297,
"goals": 39,
"xG": 36.671056651045,
"against": {

"shots": 279,
"goals": 25,
"xG": 28.870285989717

}
},
...,
"Penalty": {

"shots": 10,
"goals": 7,
"xG": 7.611688375473,
"against": {

"shots": 5,
"goals": 5,
"xG": 3.8058441877365

}
}

},
"formation": {

"4-3-3": {
"stat": "4-3-3",
"time": 1295,
"shots": 185,
"goals": 30,
"xG": 27.7899469533,
"against": {

"shots": 176,
"goals": 18,
"xG": 20.478145442903

}
},
...,
"4-4-2": {

"stat": "4-4-2",
"time": 38,
"shots": 8,
"goals": 0,
"xG": 0.87938431277871,
"against": {

"shots": 11,
"goals": 1,
"xG": 0.66449437476695

}
}

},
"gameState": {

"Goal diff 0": {
"stat": "Goal diff 0",
"time": 1284,
"shots": 154,
"goals": 20,

(continues on next page)

2.1. Understat 41

Understat Documentation, Release 0.1.1

(continued from previous page)

"xG": 20.433959940448,
"against": {

"shots": 170,
"goals": 15,
"xG": 17.543024708517

}
},
...,
"Goal diff < -1": {

"stat": "Goal diff < -1",
"time": 253,
"shots": 43,
"goals": 7,
"xG": 6.4928285568021,
"against": {

"shots": 21,
"goals": 1,
"xG": 2.9283153852448

}
}

},
"timing": {

"1-15": {
"stat": "1-15",
"shots": 51,
"goals": 6,
"xG": 7.2566251829267,
"against": {

"shots": 72,
"goals": 7,
"xG": 8.5656435946003

}
},
...,
"76+": {

"stat": "76+",
"shots": 70,
"goals": 12,
"xG": 10.272770666517,
"against": {

"shots": 77,
"goals": 8,
"xG": 10.18940022774

}
}

},
"shotZone": {

"ownGoals": {
"stat": "ownGoals",
"shots": 0,
"goals": 0,
"xG": 0,
"against": {

"shots": 2,
"goals": 2,
"xG": 2

}
(continues on next page)

42 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

(continued from previous page)

},
"shotOboxTotal": {

"stat": "shotOboxTotal",
"shots": 158,
"goals": 8,
"xG": 4.8084309450351,
"against": {

"shots": 170,
"goals": 6,
"xG": 5.4022304248065

}
},
...,
"shotSixYardBox": {

"stat": "shotSixYardBox",
"shots": 36,
"goals": 13,
"xG": 13.912872407585,
"against": {

"shots": 32,
"goals": 8,
"xG": 11.533062046394

}
}

},
"attackSpeed": {

"Normal": {
"stat": "Normal",
"shots": 258,
"goals": 34,
"xG": 30.690259062219,
"against": {

"shots": 230,
"goals": 18,
"xG": 23.094043077901

}
},
...,
"Slow": {

"stat": "Slow",
"shots": 18,
"goals": 2,
"xG": 0.71848054975271,
"against": {

"shots": 26,
"goals": 5,
"xG": 2.9855494443327

}
}

},
"result": {

"MissedShots": {
"shots": 122,
"goals": 0,
"xG": 12.353983599227,
"against": {

"shots": 155,
(continues on next page)

2.1. Understat 43

Understat Documentation, Release 0.1.1

(continued from previous page)

"goals": 0,
"xG": 13.091518453322

}
},
...,
"ShotOnPost": {

"shots": 4,
"goals": 0,
"xG": 0.81487018615007,
"against": {

"shots": 2,
"goals": 0,
"xG": 0.61989105120301

}
}

}
}

—

Understat.get_teams(league_name, season, options=None, **kwargs)
Returns a list containing information about all the teams in the given league in the given season.

Parameters

• league_name (str) – The league’s name.

• season (str or int) – The season.

• options – Options to filter the data by, defaults to None.

• options – dict, optional

Returns A list of the league’s table as seen on Understat’s league overview.

Return type list

It returns all the information for the teams in a given league, in a given season. Basically it is all the information that
is shown in the league’s table, as shown in the screenshot below

44 Chapter 2. The Class Documentation / Guide

Understat Documentation, Release 0.1.1

The function comes with the options keyword argument, and the **kwargs magic variable, and so that can be used to
filter the output. So for example, if you wanted to get Manchester United’s stats (as shown in the table), you could do
the following

async def main():
async with aiohttp.ClientSession() as session:

understat = Understat(session)
teams = await understat.get_teams(

"epl",
2018,
title="Manchester United"

)
print(json.dumps(teams))

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

which outputs (with parts omitted)

[
{

"id": "89",
"title": "Manchester United",
"history": [

{
"h_a": "h",
"xG": 1.5137,

(continues on next page)

2.1. Understat 45

Understat Documentation, Release 0.1.1

(continued from previous page)

"xGA": 1.73813,
"npxG": 0.75253,
"npxGA": 1.73813,
"ppda": {
"att": 285,
"def": 18
},
"ppda_allowed": {
"att": 298,
"def": 26
},
"deep": 3,
"deep_allowed": 10,
"scored": 2,
"missed": 1,
"xpts": 1.1711,
"result": "w",
"date": "2018-08-10 22:00:00",
"wins": 1,
"draws": 0,
"loses": 0,
"pts": 3,
"npxGD": -0.9856

},
...,
{

"h_a": "a",
"xG": 2.3703,
"xGA": 1.52723,
"npxG": 2.3703,
"npxGA": 0.766059,
"ppda": {
"att": 203,
"def": 25
},
"ppda_allowed": {
"att": 271,
"def": 21
},
"deep": 7,
"deep_allowed": 9,
"scored": 0,
"missed": 2,
"xpts": 2.0459,
"result": "l",
"date": "2019-03-10 16:30:00",
"wins": 0,
"draws": 0,
"loses": 1,
"pts": 0,
"npxGD": 1.604241

}
]

}
]

46 Chapter 2. The Class Documentation / Guide

CHAPTER 3

The Contributor Guide

If you want to help understat out and contribute to the project, be it via development, suggestions, hunting bugs etc.
then this part of the documentation is for you!

3.1 Contributing

If you’re reading this, then you’re probably interested in helping out with the development of understat! On this page
you will be able to find information that should make it easier for you to start contributing. Since contributions can be
in all kinds of different forms, the contributing guide has been split up into sections.

To contact me directly you can send an email to amosbastian@gmail.com. If you are looking for other people interested
in programming stuff related to football, then you can also join our Discord server.

3.1.1 Code contributions

Submitting code

When contributing code, you’ll want to follow this checklist:

1. Fork the repository on GitHub.

2. Run the tests with pytest tests/ to confirm they all pass on your system. If the tests fail, then try and find out why
this is happening. If you aren’t able to do this yourself, then don’t hesitate to either create an issue on GitHub
(see Reporting bugs), contact me on Discord or send an email to amosbastian@gmail.com.

3. Either create your feature and then write tests for it, or do this the other way around.

4. Run all tests again with with pytest tests/ to confirm that everything still passes, including your newly added
test(s).

5. Create a pull request for the main repository’s master branch.

If you want, you can also add your name AUTHORS.

47

mailto:amosbastian@gmail.com
https://discord.gg/cjY37fv
mailto:amosbastian@gmail.com
https://github.com/amosbastian/understat/blob/master/AUTHORS.rst

Understat Documentation, Release 0.1.1

Code review

Currently I am the only maintainer of this project. Because of this I will review each pull request myself and provide
feedback if necessary. I would like this to happen in a clear and calm manner (from both sides)!

New contributors

If you are new or relatively new to contributing to open source projects, then please don’t hesitate to contact me
directly! I am more than willing to help out, and will try and assign issues to you if possible.

Code style

The understat package follows PEP 8 code style. Currently there is only one specific additions to this, but if you think
more should be added, then this can always be discussed.

• Always use double-quoted strings, unless it is not possible.

3.1.2 Documentation contributions

Documentation improvements and suggestions are always welcome! The documentation files live in the docs/
directory. They’re written in reStructuredText, and use Sphinx to generate the full suite of documentation.

Of course the documentation doesn’t have to be too serious, but try and keep it semi-formal.

3.1.3 Reporting bugs

If you encounter any bugs while using understat then please don’t hesitate to open an issue. However, before you do,
please check the GitHub issues (make sure to also check closed ones) to see if the bug has already been reported.

A template is provided below to make it easier to understand the issue:

Expected behaviour
What did you expect to happen?

Actual behaviour
What actually happened?

How to reproduce
When did it happen? Include a code snippet if possible!

3.1.4 Feature requests

Currently understat is in active development, so feature requests are more than welcome. If you have any ideas for
features you’d like to see added, then simply create an issue with an enhancement label.

3.2 Authors

3.2.1 Maintainer

• Amos Bastian <amosbastian@gmail.com> @amosbastian

48 Chapter 3. The Contributor Guide

https://pep8.org/
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/index.html
https://github.com/amosbastian/understat/issues
https://github.com/amosbastian/understat/issues
mailto:amosbastian@gmail.com
https://github.com/amosbastian

Understat Documentation, Release 0.1.1

3.2.2 Contributors

• Chris Musson <chris.musson@hotmail.com> @ChrisMusson

• Gracjan Strzelec <gracjanss98@gmail.com> @gracjans

3.2. Authors 49

mailto:chris.musson@hotmail.com
https://github.com/ChrisMusson
mailto:gracjanss98@gmail.com
https://github.com/gracjans

Understat Documentation, Release 0.1.1

50 Chapter 3. The Contributor Guide

Python Module Index

u
understat, 5

51

Understat Documentation, Release 0.1.1

52 Python Module Index

Index

G
get_league_fixtures() (understat.Understat

method), 6
get_league_players() (understat.Understat

method), 23
get_league_results() (understat.Understat

method), 25
get_league_table() (understat.Understat

method), 8
get_match_players() (understat.Understat

method), 27
get_match_shots() (understat.Understat method),

30
get_player_grouped_stats() (under-

stat.Understat method), 11
get_player_matches() (understat.Understat

method), 18
get_player_shots() (understat.Understat

method), 20
get_player_stats() (understat.Understat

method), 22
get_stats() (understat.Understat method), 33
get_team_fixtures() (understat.Understat

method), 35
get_team_players() (understat.Understat

method), 36
get_team_results() (understat.Understat

method), 38
get_team_stats() (understat.Understat method),

40
get_teams() (understat.Understat method), 44

U
understat (module), 5

53

	The User Guide
	Installing understat

	The Class Documentation / Guide
	Understat

	The Contributor Guide
	Contributing
	Authors

	Python Module Index
	Index

